US 2005/0005261 Al

[0431] Code generators may be easily constructed from a
well defined metamodel. Many CASE and UML tools
already provide code generation based on metamodels. In
those cases, a complex mapping is necessary to generate
appropriate source code. The introduction of a meta-imple-
mentation layer simplifies code generation significantly.
Operations cannot be fully captured in the current UML and
CASE tools without resorting to a programmer typing code
into the metamodel tool. A virtual implementation, on the
other hand, contains a drag-and-drop interface for adding
“pseudo-code” logic that the virtual implementation is able
to execute directly. By constructing the virtual implemen-
tation for a model, a simple one-to-one mapping exists
between the virtual implementation and the metamodel. By
further constructing a serializer for each virtual implemen-
tation, source code can be generated for any language with
similar concepts. A serializer is an object that writes the lines
of code related to one virtual implementation. For example,
a CSharp_ForLoopSerializer would accept a ForLoopImple-
mentation and generate the appropriate C# source code as
follows:

Write(“for(int i=");
Serialize(ForLoopImplementation. getMinValue());

Write(« i<);
Serialize(ForLoopImplementation. getMax Value());
Write(< i=i+");

Serialize(ForLoopImplementation. getIncrement());
WriteLine(“{”);
/[For-each sub-operation serialize it
for(Iterator itr= ForLoopImplementation.getSubOperations();
itr.hasNext();) {
Serialize(itr.next());

/[close the loop

Write(“}7);

In the above code, each call to Serialize() gets the serializer
appropriate for the implementation object returned. The resulting code
would look something like this:

for(int i=0; i<10; i++) {

System.out.println(“Hello World”);

[0432] Object query languages provide a simple scripting
language, similar to SQL, for querying sets of objects. The
query places constraints on the objects that should be
returned and may also select attribute values from those
objects.

[0433] Selection of various attributes of objects is simpli-
fied by using a component integration engine that describes
every object as a model containing attributes. Retrieval of
these attributes is performed using Attribute Accessors.

[0434] The value constraints and the logical expressions
already developed in the meta-implementation layer form all
the structures necessary for expressions used in the object
selection constraints.

[0435] After implementing the language serializers
according to the process described above the final compo-
nent necessary to perform an object query language is a
parser. Where the serializers convert virtual implementa-
tions to source code, parsers convert source code into a
structure understood by the computer. In this case, a parser
would need to be implemented to convert the Object Query
Language (OQL) back into virtual implementations. Parsers

Jan. 6, 2005

are well understood by computer programmers. The refer-
ence component integration engine, component integration
engine, even provides all the structures necessary to rapidly
build a parser for a new language and convert that language
into virtual implementations.

[0436] An object-relation mapping engine stores object
data to records in a relational database. The process involves
retrieving the object data, performing some simple conver-
sions on this data to ensure that the data is in the proper form
for storage, and generating the SQL statements necessary for
inserting, updating, and deleting this data. Object-relational
mapping engines also perform the mapping from the data-
base back to an object. In this case, the object to be retrieved
is selected by a process. This process must use the object’s
identity (the primary key in the database) or some of the
object’s characteristics (an OQL query). The records
returned from the database are converted back to an object
structure using the same mapping used to store them (con-
versions are reversed).

[0437] By using a component integration engine with a
meta-implementation layer which uses databases to create
instances and a second meta-implementation layer for
objects (virtual or compiled), an object can be stored in a
database by simply mapping from the attributes of one
meta-implementation layer to the attributes of another meta-
implementation layer. When the object meta-implementa-
tion is copied into the database meta-implementation, a
record is created in the database and the attribute values are
stored in each of the columns. More complex mappings
involving more than one table would simply involve more
than one database meta-implementation model or would use
the facilities the database meta-implementation provides for
mapping objects to database tables. All the implementation
related to SQL generation, object selection, attribute
retrieval, and conversion are already part of the component
integration engine (with a database meta-implementation).

[0438] An Extract Transform Load (ETL) tool provides
the ability to select data from a data source (a database table,
comma delimited file, fixed-length file, spreadsheet) and
perform transformations on that data (conversions, merges,
value lookups, etc.) to create a new record to be loaded into
a database. The entire process can then be saved and reused
to add more data to that database table at some future date.
The ETL tool may also allow scheduling of these extracts on
a continuous basis. ETL tools are very complex. Metadata
needs to exist to describe each transformation operation so
it can be reconstructed. This data needs to be saved to a
database or file in order to be persisted for future use. The
transformations must describe an implementation of an
operation that accepts parameters and returns a result. The
transformation process may include branching statements
and loops. The resulting data must be stored in the appro-
priate database table.

[0439] A component integration engine can contain com-
ponents for each type of datasource to create an object
representation of the data contained in that data source. As
discussed in the Object-Relational Mapping section, data
retrieval and data storage related to objects is a trivial
extension of a component integration engine. By simply
adding the virtual operation implementations from a com-
ponent integration engine to an Object-Relational Mapping
Engine, an ETL tool results.

